Matematica discreta Esempi

Trovare l'Inversa e^(2x)
Passaggio 1
Scambia le variabili.
Passaggio 2
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.1
Riscrivi l'equazione come .
Passaggio 2.2
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 2.3
Espandi il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.3.1
Espandi spostando fuori dal logaritmo.
Passaggio 2.3.2
Il logaritmo naturale di è .
Passaggio 2.3.3
Moltiplica per .
Passaggio 2.4
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.4.1
Dividi per ciascun termine in .
Passaggio 2.4.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.4.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.4.2.1.1
Elimina il fattore comune.
Passaggio 2.4.2.1.2
Dividi per .
Passaggio 3
Replace with to show the final answer.
Passaggio 4
Verifica se è l'inverso di .
Tocca per altri passaggi...
Passaggio 4.1
Per verificare l'inverso, controlla se e .
Passaggio 4.2
Calcola .
Tocca per altri passaggi...
Passaggio 4.2.1
Imposta la funzione composita per il risultato.
Passaggio 4.2.2
Calcola sostituendo il valore di in .
Passaggio 4.2.3
Espandi spostando fuori dal logaritmo.
Passaggio 4.2.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.2.4.1
Elimina il fattore comune.
Passaggio 4.2.4.2
Dividi per .
Passaggio 4.2.5
Il logaritmo naturale di è .
Passaggio 4.2.6
Moltiplica per .
Passaggio 4.3
Calcola .
Tocca per altri passaggi...
Passaggio 4.3.1
Imposta la funzione composita per il risultato.
Passaggio 4.3.2
Calcola sostituendo il valore di in .
Passaggio 4.3.3
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.3.3.1
Elimina il fattore comune.
Passaggio 4.3.3.2
Riscrivi l'espressione.
Passaggio 4.3.4
L'esponenziazione e il logaritmo sono funzioni inverse.
Passaggio 4.4
Poiché e , allora è l'inverso di .